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Breathing orbital valence bond (BOVB) computations (Hiberty, P. C.; Humbel, S.; Archirel, P.J. Phys. Chem.
1994, 98, 11697) are used to obtain identity barriers for hydrogen transfer reactions between X groups, X)
H, CH3, SiH3, GeH3, SnH3, and PbH3. Modeling of these barriers by means of VB state correlation diagrams
(Shaik, S.; Shurki, A.Angew. Chem.1999, 38, 586) lead to simple expressions for the barriers (eqs 21 and
22). These expressions show that the organizing quantity of the barriers is the singlet-triplet excitation energy
(∆EST) or bond energy (D) of the X-H bond that undergoes activation. The larger the∆EST or D, the higher
the identity barrier. These equations are successfully applied to deduce barriers for hydrogen transfers between
electronegative groups, X) X′ ) F, Cl, Br, and I. The “polar effect” (Russell, G. A. InFree Radicals;
Kochi, J. K., Ed.; Wiley: New York, 1973; Vol 1, p 293-298) is shown to be significant but virtually
constant in the series. Thus, identity processes mask the polar effect which is more clearly expressed in
nonidentity hydrogen transfer reactions. Generalization of the model to other atom transfer reactions is discussed.

One of the most fundamental reactions of radicals is hydrogen
abstraction. On the one hand, this is a simple enough process
to draw a great deal of basic research. On the other hand, its
added allure is its association with DNA-damaging, destruction
of cell membranes, aging, Alzheimer’s disease, oxidation of
organic molecules by metallo-enzymes, and so on.1 As such,
the field of hydrogen abstraction has become an arena of
considerable practical and theoretical research, aimed at under-
standing the reactivity patterns of these reactions. Important
correlations were established with fundamental factors, such as
the bond energy, steric effects, and the “polar effect”. The latter
effect is related to the charge polarization in the transition
state.2,3 Nevertheless, there is still a need for a unifying model
which can reveal trends and make predictions in a systematic
manner. A key toward unification is the understanding of the
identity process, where the hydrogen is transferred between two
identical groups, X) X′, in eq 1:

The barrier of identity reactions has a pure kinetic origins, and
therefore, its modeling is a key step in any theoretical treatment.

It is reasonable to expect that the successful models will be
those which involve a clear mechanism of barrier formation
associated with compact expressions of the barrier and its
dependence on fundamental properties of the reactants. Such
models already exist and describe barrier formation in terms of
state-crossing4 and valence bond (VB) configuration mixing,5-10,
etc.11 Nevertheless, all of the existing models have a way to go

toward the desired goal of unification, and there still seems to
be disagreement between them on the important factors of
reactivity. Is it the polar effect that dominates trends in the
identity barriers or is it the bond energy of or the singlet-triplet
excitation of the H-X bond that is broken and remade in the
identity process?4,5 As a step along the way, we decided to apply
ab initio VB computations of trends in the barriers of identity
hydrogen transfer reactions. Previous VB computations were
limited to X ) X′ ) H6-8 and to X) X′ ) F.6 Here we extend
the VB study to group IV radicals, X) X′ ) CH3, SiH3, GeH3,
SnH3, and PbH3, and compare the results with the most
elementary reaction of the family, for X) X′ ) H.12 The
reaction for X) CH3 was investigated experimentally, and its
barrier is known.13,14 Nonidentity hydrogen abstraction by X•

) H• and H-X′ ) SiH4 and GeH4 are important processes in
interstellar atmospheres and in the semiconductor industry.15

R3Sn-H is a useful reagent, which participates in hydrogen
transfer in organic syntheses. Thus, the reaction series in eq 1
has also relevance to practical processes. The present paper aims,
therefore, to quantify by means of VB computations the various
factors of reactivity in the identity series, the bond energy, the
singlet-triplet excitation, and the polar effect; to weigh their
relative importance; and establish the organizing quantities that
dominate all of the computed trends. The barriers will then be
modeled by means of VB diagrams9,10and compact expressions
will be derived. The so derived barrier expressions will be tested
by application to other reactions where the polar effect should
be strong (X ) X′ ) F, Cl, Br, and I).

Theoretical Methods

The potential energy profile can be constructed by mixing
of VB structures along the reaction coordinate.10 The compact
model uses VB state correlation diagrams (VBSCDs)10 exempli-
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fied in Figure 1 with one of the target reactions, in eq 1 (X)
X′ ) CH3). The coordinateQ is defined as the bond order
difference:

wheren(d) is calculated for any given distance (d) relative to
the equilibrium distance (d0) of X-H. The constanta is
conveniently chosen so as to make then value equal 0.5 at the
transition state (with no implications on questions related to
“conservation of bond order”).8

The barrier arises because of the avoided crossing of two
state curves, called the Lewis curves (labeled with triangles),
which correspond to the bonds that interchange during the
transformation. The barrier is given as

wheref is some fraction of the promotion gap,G, that separates
the two Lewis curves at their onset (Q ) (1). The quantityB
is the resonance energy of the transition state (the curve labeled
with squares), which is contributed in part by the avoided
crossing of the two Lewis curves and in part by the mixing of
excited states not associated with the bond breaking and bond
formation and, hence, called foreign excited state,ΨF*. The
foreign excited state in Figure 1 is the curve decorated with
diamonds. As explained later, it corresponds to the charge
transfer state. The VBSCDs and respective quantities are
computed by means of ab initio VB methods.

VB Procedures.In VB theory, a state wave function,Ψ is
given as a linear combination of VB structures,Φi, in eq 4:

The VB structures correspond to all of the modes of distributing
the “active electrons” which participate in the interchanging

bonds. In the case of hydrogen transfer, there are three electrons
to distribute in the orbitals which define the interchanging bonds
along the X-H-X′ axis. These are the active electrons and
orbitals which are treated in a VB manner. The rest of the
occupied orbitals (the inactive part) are treated as electron pairs
in doubly occupied orbitals.

In the VBSCF method,6 one optimizes the coefficients as well
as the orbitals which constitute the VB structures. The orbitals
are optimized as a common set for all of the VB structures. In
the BOVB method,16 the orbitals are allowed to be different
for each VB structure. In this manner, the orbitals respond to
the instantaneous field of the individual VB structure rather than
to an average field of all of the structures. As such, the BOVB
method accounts for part of the dynamic correlation, while
leaving the wave function compact. The BOVB method is
quantitatively more accurate than VBSCF, even though BOVB
and VBSCF wave functions look generally very similar.

A compact VB method, which is partway between VBSCF
and BOVB, is BDOVB which describes each bond in a single
structure with bond distorted orbitals (BDOs)17 that are semilo-
calized atomic orbitals with delocalization tails, like the ones
used in GVB and SCVB methods,18,19 with the exception that
the delocalization tails of the BDO are constrained to the bonded
atoms in a given VB structure. Thus, by allowing the BDOs to
delocalized over X and H, one describes the Lewis X-H bond,
whereas by allowing them to delocalize over H and X′, one
describes the H-X′ bond. Because the BDOs and other orbitals
are freely optimized, the BDOVB method involves some of the
dynamic correlation of the BOVB method but is again quan-
titatively less accurate.

The final and best results are presented at the BOVB level.
It must be remembered though that the BOVB wave function
is very compact and therefore its accuracy is expected to be
less than those of extensively correlated MO-based methods.
The merit of the VB calculation is its lucidity, whereas its
numerical accuracy should be assessed against the trends rather
than the individual numbers.

The weights of the VB structures were determined by use of
the Coulson-Chirgwin20 formula, eq 5, which is the equivalent
of a Mulliken population analysis in VB theory:

The calculations used the 6-31G* basis set for X) H, CH3,
and SiH3. For SiH3 and the heavier analogues, we used the Los
Alamos effective core potential and matching basis set,
LANL2DZ, to which we added d polarization functions taken
from 6-31G* (henceforth ECP/31G*). To benchmark the VB
results, we carried out MP2 and CCSD(T) calculations for all
of the reactions. The VB calculations were done with the
Xiamen package of programs.21 The MP2 and CCSD(T)
calculations were carried out using Gaussian 98.22

VB Structures Set.The VB structures for a hydrogen transfer
reaction are shown in Scheme 1. All of the structures involve
three electrons, which are distributed among the three fragments
in all possible ways. Two of the structures are covalent and
describe the covalent spin pairing in either the right-hand or
left-hand bond of the reactants (r) and products (p), respectively.
These structures are labeled asΦHL(r) and ΦHL(p) where the
subscript HL refers to names of Heitler and London who
introduced this wave function in their seminal study.23 Other
structures are ionic and labeled asΦi with parenthetical
designators which indicate whether they contribute to the bonds
of the reactants and products (r and p) or are only excited states
(ex).

Figure 1. Typical VBSCD for X• + H-X′ f X-H + •X′ exemplified
for X ) CH3. The Lewis curves are annotated with triangles, and the
Lewis states nascent of their avoided crossing are shown with bold
circles. The final adiabatic state which involves the mixing of the charge
transfer states,ΨF*(ct), is annotated with bold squares. The crossing
point is indicated by the star and its height is given by∆Ec. Shown
also is the resonance energy of the transition state,B, and the promotion
gaps,G.

Q ) n1(d1) - n2(d 2); n(d) ) e-a(d-d0) (2)

∆Eq ) fG - B (3)

Ψ ) ΣiciΦi (4)

wi ) ci
2 + Σj*i [cicj〈Φi|Φj〉] (5)
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A typical plot of the energies of these structures along the
reaction coordinateQ is exemplified in Figure 2 (using VBSCF
data for X ) CH3). It is apparent from Figure 2 that the HL
structures intersect one another alongQ. Further, it is seen that
all other six ionic structures are substantially higher than the
HL ones, atQ ) 0 and(1. This is a typical situationfor all of
the series studied here.

Formation of Lewis Curves from the VB Structures. To
convert Figure 2 into a compact VBSCD shown above in Figure
1, we need to mix the covalent HL structures with the
corresponding ionic structures which are required to describe a
two-electron Lewis bond. Thus, mixing ofΦHL(r) with Φi(r)
structures3 and4 leads to the right-hand side H-X′ Lewis bond
for the reactant X•/H-X′. Similarly, mixing ofΦHL(p) with Φi-
(p) structures5 and6 leads to the Lewis bond of the product,
X-H/•X′. Subsequently, the two Lewis curves are computed
by tracing alongQ the optimized VB structure given by eqs 6a
and 6b:

The Lewis structures can be optimized at the VBSCF or BOVB
levels. Alternatively, use of BDOs can lead to a compact
description of the Lewis structures. Thus, the BDOs of the Lewis
structure,ΦL(r), involve delocalization tails on the right-hand
side X′ and on the H, whereas the active orbital of X is strictly
localized on this center, resulting in X•/H-X′. Similar but mirror
image description pertains to the BDOs inΦL(p), which result
in X-H/•X′.

From Lewis Curves to the VBSCD.The remaining struc-
tures,Φi(ex),7 and8, correlate with the charge-transfer excited
states of the Lewis structures. For example, in one extreme of
Q, structure7 is the charge transfer state X+/(HX′)-, and in
the otherQ extreme, it is the charge transfer state, (XH)+/:X′-.
Structure8 is the mirror image of structure7. These structures
do not contribute to the nature of the bonds in the ground states
and, as such, do not belong to the Lewis curves. They can
however be grouped into a single excited-state curve, called
the “foreign excited state”,ΨF*.10 In our case, we add the charge
transfer designator to specify the nature of this “foreign state”,
ΨF*(ct), defined in eq 7:

The compact diagram VBSCD was already exemplified above
in Figure 1, for X) CH3, which is prototypical for all of the
reactions studied here. The Lewis structures,ΦL (shown with
triangles), intersect along the coordinateQ, whereas the energy
of the excited-state curve (decorated with diamonds),ΨF*(ct),
varies basically horizontally above the two principal curves. The
two Lewis curves mix and avoid their crossing generating a
lower energy curve, which is the resonating Lewis state at the
transition state geometry,ΨL, eq 8. This is the curve annotated
with bold circles in Figure 1. In the case of hydrogen transfer
process, the bonding combination of the Lewis structures is their
negative linear combination (this is typical to all three-
electron\three-center systems):24

Further mixing of the foreign excited state into the Lewis state
generates the transition state, as defined in eq 9 and shown in
Figure 1 by the curve with the bold squares:

The Lewis states and the foreign excited states are not frozen
and are allowed to relax during the calculations, so that the final
adiabatic state (the curve annotated with squares in Figure 1)
is the Variational mixture of all of the eight structures in the
VB structure set.

Another important state is the linear combination of the HL
structures, which cross alongQ and thereby generate the
backbone of the state crossing in the VBSCD. The bonding
combination of the HL structures at the crossing point is called
the HL state, given by eq 10:

It is seen that the Lewis state is fashioned after the HL state.
Thus,althoughΨHL accounts for the coValent three-electron
delocalization oVer the three reaction centers,ΨL simply adds
the contribution of the ionic fluctuations into the two-electron
bonds. The mixing ofΨF*(ct) further adds to the transition state
the charge-transfer fluctuations from one two-electron bond to
the other.

Figure 2. Energy variation of the VB structures along the reaction
coordinateQ.

SCHEME 1: VB Structure Set for Identity Hydrogen
Transfer Reactions, X• + H-X′ f X-H + •X′

ΦL(r) ) c1ΦHL(r) + c3Φi(r; 3) + c4Φi(r; 4) (6a)

ΦL(p) ) c2ΦHL(p) + c5Φi(p; 5) + c6Φi(p; 6) (6b)

ΨF*(ct) ) c7Φi(ex;7) + c8Φi(ex;8) (7)

ΨL ) N[ΦL(r) - ΦL(p)]; N ) normalization const. (8)

ΨTS ) cL ΨL + cF ΨF*(ct) (9)

ΨHL ) N[ΦHL(r) - ΦHL(p)]; N ) normalization const.
(10)
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The involvement of the ionic structures in the transition state
is associated with the polar effect which is widely discussed in
the physical organic community.2,3 This effect is measured
through Hammett correlations, which characterize the response
of probe substituents, on the groups X and/or X′ (taken, e.g.,
as substituted benzyl groups2d), to the electron density develop-
ment in the transition state. A polar effect in a radical reaction
is marked whenever the substituents affect the rate of the
reaction in a manner that reveals a significant charge develop-
ment on the reaction centers. It is apparent that the VB method
offers the clearest possible means of defining and quantifying
the polar effect by assessing the energetic effect because of the
mixing of the ionic structures into the covalent situation, as
discussed below.

Computation of Reactivity Parameters. By reference to
Figure 1, the important reactivity parameters are the height of
the crossing point,∆Ec, and the resonance energy of the
transition states,B. Let us discuss these factors in turn.

The height of the crossing point can be related to the
promotion gap separating the two Lewis curves at the extremes
of Q ) (1, as follows:

Thus,G is determined by computing the energies ofΦL(p) and
ΦL(r) at the same geometry corresponds to eitherQ ) -1 or
to Q ) 1. The factorf in eq 11 is simply the fraction of the gap
that enters under the crossing point, i.e.,f ) ∆Ec/G, and it is
computed variationally during the VB procedure. The third
factor in the model is the resonance energy,B, of the transition
state. By reference to Figure 1, theB quantity is given by eq
12 as the energy of the transition state relative to the energy of
the crossing point; the latter is given by the energy of any one
of the Lewis structures at the crossing point:

The quantityB provides the resonance energy of the classical
Lewis structures and the added contribution of charge-transfer
fluctuations (due to the mixing of theΨF*(ct) excited state).B
is calculated variationally.

Qualitative Derivation of Reactivity Parameters

Understanding the variation of the reactivity parameters may
be achieved by use of a semiempirical VB theory (see Appendix
1) which is based on formally covalent wave functions with
embedded ionicity.25-27

Promotion Gap. ConsiderG atQ ) -1 where XsH is short
and HsX′ is infinite. Here, the ground state isΦL(r) having a
short X-H bond and an infinitely distant•X′. At the same
geometry,ΦL(p) is an excited state because the X• •H species
in the short linkage are not paired and maintain a nonbonded
repulsive interaction, whereas the spin-paired H and X′ species
are infinitely distant. It is possible to show that the nonbonded
repulsive interactions derive from the Pauli repulsion of two
electrons having the same spin, and henceG is related to the
singlet-triplet excitation of the X-H bond. In fact, the wave
function of the X• •H species is half triplet and half singlet.8,10

Consequently, the quantityG is simply the energy difference
between the ground state with a singlet X-H bond and an
excited-state X• •H with a 50% character. With neglect of
overlap this becomes

where the promotion gap is seen to be related to the excitation
energy involved in unpairing the X-H electron-pair bond into
a triplet pair. The same, but mirror image arguments, exist for
the promotion gap atQ ) 1. Inclusion of overlap changes
slightly the factor of 0.75.28

The Factor f. The semiempirical theory shows that there is
a fundamental difference between strong binders and weak
binders.8,9,29 Weak binders are metallic atoms such as alkali
which form bonds for which∆EST , 2D. Strong binders on
the other hand form bonds for which∆EST > 2D. All of the X
groups in our study are strong binders (see later Table 2), and
we shall therefore refer only to them in the text (see however
the full picture in the Appendix). Thus, the height of the crossing
point is ∆Ec ) 0.25∆EST′ (the prime refers to the value in the
crossing point). BecauseG ) 0.75∆EST, then assuming that the
∆EST′ and∆EST values are not too different, the resultingf factor
is expected to be a constant in the series, i.e., eq 14:

As shall be seen in the results section, our VBSCDs correspond
to the gap expression in eq 13, and the computedf factors are
all close to the qualitative estimate in eq 14.

An alternative way to generate the VBSCD would have been
to follow the Lewis curves in such a manner that they would
have correlated directly to the spectroscopic state in which the
unpaired moiety, e.g., X• •H, is in a pure triplet situation,
coupled to the distant•X′ into a doublet state,8,10 in which case
the promotion gapG′ will be

Because theVariationally determined height of the crossing point
must be the same in the two cases, there will be a mutual
compensation in the value off to ca. f′ ∼ 0.25, to keep the
same∆Ec value. This alternative method although in principle
entirely equivalent to the one based on eqs 13 and 14 is more
complex to implement in a fully variational manner. Neverthe-
less, for qualitative discussions we can use either set of
quantities:G, f or G′, f′.

The B factor: Using the semiempirical VB theory, the
quantityB is expected8,9,29,30to be eq 16:

where the primed value refers to the singlet-triplet excitation
at the crossing point.

There are a few related quantities, which are qualitatively
useful. One isBL, which is the resonance energy due to only
the avoided crossing of the classical Lewis curves, as defined
in eq 17a. The second is the resonance energy due to the
covalent HL structures only as in eq 17b. Finally, the covalent-
ionic resonance energy is defined by eq 17c. The latter quantity
provides the complete contribution of the ionic and charge
transfer structures relative to the covalent HL state and is
associated with the polar effect:2,3

All of these values are computed in this study in a manner where
the states and the reference structures are variational wave
functions.

∆Ec ) fG (11)

B ) |E(ΨTS) - E(ΦL,cross)| (12)

G ) 0.75∆EST(X-H) ) 0.75∆EST(H-X′) (13)

f ) ∆Ec/G ∼ 1/3 (14)

G′ ) ∆EST (15)

B ) 0.25∆EST′ (16)

BL ) |E(ΨL) - E(Ψcross)| (17a)

BHL ) |E(ΨHL) - E(ΦHL, cross)| (17b)

REcoV-ion ) |E(ΨTS) - E(ΨHL)| (17c)
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From the above derivations, it follows that all of the reactivity
factors are related to one quantity:∆EST, the singlet-triplet
promotion energy of the bond which is broken during the
transformation.

Results

Figure 3 shows the key geometric parameters of the species,
whered andd′ refer to the transition state andd0 refers to the
ground-state molecule. The computation for X) SiH3 were done
at the all electron (ae) as well as effective core potential levels
to ascertain the compatibility of the two basis sets. Also shown
in the figure is the fraction of bond lengthening in the transition
state (∆d/d0 ) [(d - d0)/d0]). It is seen that, as X is varied
down the family, the fraction of bond stretching decreases.

Table 1 collects the weights of the covalent (ωcov) and ionic
structures (ωi). The latter are separated into the ionic structures,
which contribute to the Lewis bondsωi(r,p) and those nascent
from the foreign excited charge transfer state,ωi(ex). The
corresponding weights for the reactants are given in parentheses.
All of the species are dominated by the covalent structures, but
the transition states are considerably more ionic than the
reactants. The major ionic contribution comes from those
structures which contribute to the Lewis bonds, whereas the
charge-transfer types have smaller weights. The covalent weight,
ωcov, exhibits a zigzag pattern, starting high for X) CH3,
decreasing for X) SiH3, increasing again for X) GeH3, and
for X ) PbH3. This trend follows the X electronegativity that

does not decrease uniformly down the family because of two
important effects: One is “the transition metal contraction”
which occurs down from Si to Ge, making the latter more
electronegative. The second is the “relativistic contraction”
which occurs in the transition from Sn to Pb.31

Table 2 shows barriers and reactivity quantities at the different
VB levels, BOVB and BDOVB. These are compared whenever
appropriate to the MP2 and CCSD(T) quantities. The BOVB
computed bond energies,D, compare accurately to the MP2
data. The BOVB barriers are closer to the MP2 barriers than
the BDOVB values. It is clear though that all of the methods
are less accurate than the more extensive CCSD(T) method.
The most accurately computed barrier for X) H is ca. 10 kcal/
mol.12 The experimental barrier for X) CH3 is estimated as
18 kcal/mol5,32 from the experimental activation energy (14.9
kcal/mol13,14). However, what is important is that all of the
methods give the same trends, that the barriers decrease down
the family from X ) CH3 to PbH3. It is seen that the trend in
the barrier reflects the trend in the percentage of bond stretching
in the transition state, in Figure 3. The higher the barrier the
more extensive is the bond stretching in the transition state.

The BOVB values of the transition state resonance energy
quantityB are about 1 kcal/mol larger than the corresponding
BDOVB data. The height of the crossing point differs by
approximately 2 kcal/mol for the two methods. These two small
increments account together for the almost constant 3.23( 0.43
kcal/mol difference in the barriers of the two VB methods.
Apparently, the constrained BDOVB wave function exerts a
roughly constant effect on all of the reactions, relative to the
more flexible BOVB method. It is interesting to note that theB
value for X ) H is virtually the same as the one reported 11
years ago using a multistructure VB method and a more
extensive basis set than here.8 Indeed, from previous experience
with delocalized ground-state species, isoelectronic with the
transition states in this study, the accuracy of theB quantity
(wherever could be compared with experimental estimates) is
generally good at the BOVB level with double-ú basis set. It is
likely therefore that the major source of discrepancy in the
barrier, relative to higher level computations, will arise because
of overestimation of the height of the crossing point.

The BL quantity, in Table 2, provides the resonance energy
due to the two classical Lewis structures. TheB - BL difference
is approximately a constant 6.5( 1.2 kcal/mol for all of the
series. This rather small difference shows that most of the
resonance energy of the transition state is due to the classical
Lewis structures and the charge transfer states contribute a
smaller amount that appears to be constant in the series.

Further insight into the factors of the resonance energy can
be gained from theBHL quantity that refers to the resonance
energy of the covalent HL structures alone. It is seen that the
covalent resonance energy, which depends largely on the atomic
resonance integrals and corresponding overlaps,24,30 does not
vary much in the series. It is largest for X) H and CH3,
reflecting the fact that these are the strongest binders in the
series, having the largest resonance integrals. Complementary
to the covalent resonance energy is the covalent-ionic resonance
energy, REcov-ion defined above in eq 17c. It is seen again that
REcov-ion is roughly a constant, with the exception of CH3 which
has the largest contribution. Moreover, the REcov-ion does not
correlate with the weight of the ionic structures, in Table 1,
which are seen to be larger for the heavier elements in the series.
The reason for that is that the ionic-covalent contribution to
the resonance energy of the transition state is a perturbation by
the ionic structures on the primary covalent HL state. The

Figure 3. Optimized (MP2/6-31G* and MP2/ECP-31G*) bond lengths
(in Å) of reactants (d0) and transition states (d and d′) for identity
hydrogen transfer reactions.

TABLE 1: BOVB Calculated Weights of Covalent (ωCov)
and Ionic (ωi) Structuresa in the Ground and Transition
State of the X• + H-X′ f X-H + •X′ Process

entry X ωcov
b ωi(r,p)b ωi(ex)b

1 H 0.700 (0.794) 0.265 (0.206) 0.035 (0.000)
2 CH3 0.640 (0.723) 0.311 (0.277) 0.049 (0.000)
3 SiH3 0.584 (0.742) 0.328 (0.258) 0.088 (0.000)
4 SiH3

c 0.628 (0.783) 0.307 (0.217) 0.065 (0.000)
5 GeH3

c 0.634 (0.784) 0.308 (0.216) 0.058 (0.000)
6 SnH3

c 0.635 (0.788) 0.300 (0.212) 0.065 (0.000)
7 PbH3

c 0.637 (0.786) 0.293 (0.214) 0.070 (0.000)

a ωi(r,p) refers to structures3-6, whereasωi(ex) refers to7 and8
in Scheme 1.b Values out of parentheses are for the transition state.
Values in parentheses refer to the reactants.c ECP/31G* data. Other
data refer to 6-31G*.
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covalent-ionic resonance energy can then be expressed as a sum
of the perturbation energies of the individual ionic structures,
as shown in eq 18:

Here,ci is the coefficient of theith ionic structure and the second
factor is the matrix element of that structure with the HL state.
The matrix element is proportional to the resonance integrals
between X and H. These resonance integrals are larger for the
lighter element, C, in the X) MH3 series (M) C, Si, Ge, Sn,
and Pb) which is also the stronger binder. The coefficientci is
inversely proportional to the energy gap between the ionic
structure and the HL state. This gap decreases for the heavier
elements in the series, so they have higher degree of ionicity in
the transition state. However, the contributionδEcov-ion(i) to
the covalent-ionic resonance energy, which is a product of two
oppositely varying quantities, remains quasiconstant, with the
exception of X) CH3 where the matrix element appears to
dominate the behavior of all of the components of the resonance
energy (BL, BHL, and REcov-ion) in Table 2.

The other quantities in Table 2 areG, ∆EST, andf. First, it is
seen that the bond energy is related to the singlet-triplet
excitation as,D ) 0.36- 0.48∆EST, such that all of the groups
are strong binders with∆EST> 2D. The promotion gaps,G, is
almost a constant fraction 0.69-0.71 of the singlet-triplet
excitation of the bond,∆EST, as predicted in eq 13. Thef factor
is a quasiconstant close to the predicted value,1/3 in eq 14, using
qualitative reasoning of semiempirical VB theory. As reasoned
above, an alternative VBSCD would contain principal Lewis
curves anchored in spectroscopic states withG′ ) ∆EST (eq
15). To produce the same height of the crossing point,∆Ec, the
f quantity would be rescaled by a constant factor of 0.69-0.71,
which is found to exist here betweenG and∆EST. These scaled
f′ values will also be quasiconstant, 0.25-0.27, in accord with
the qualitative estimate. Indeed, as stated already above, the
two alternative VB diagrams would lead to entirely equivalent
predictions.

Discussion

Figure 4 shows the correlation of the barrier,∆Eq, the height
of the crossing point,∆Ec, and transition state’s resonance
energy,B, against three fundamental quantities: the promotion
gap,G, in (a), the singlet-triplet excitation of the activated bond,

∆EST, in (b), and the bond energy of this bond,D, in (c). The
correlations look almost identical due to the fact, already
reasoned above, that bothG andD vary in relation to the∆EST

quantity of the bond undergoing activation. Moreover, it appears
that the major reactivity factors∆Ec andB also correlate with
the ∆EST quantity. In the following discussion, we formulate
simple expressions which enable one to estimate the barrier in
a manner that reveals the interrelation of all of the quantities.

A. Qualitative vis a vis Quantitative Aspects of the
VBSCD. Table 3 involves barriers calculated by model VB
equations based on the semiempirical derivations of the various
VB factors. The expressions of the barriers rely on singlet-
triplet excitation energies. Because the latter quantities are not
always readily available, we derive alternative expressions based
on bond energies, via the relation of the latter quantities to the
singlet-triplet excitations.

Resonance Energy of the Transition State.We start with the
resonance energy of the transition state,B. On the basis of eq
16, B is one-quarter of the singlet-triplet excitation energy,
∆EST′, of the X-H bond at the transition state. Because the
transition state bonds are stretched, the∆EST′ values are smaller
than the corresponding ones,∆EST, at the reactant geometry.
We may therefore expressB in terms of the∆EST quantity as
follows:

Using theB datum for X) H, we obtain from eq 19b a value
of κ ) 0.28, whereas for the entire series, the values cluster
near a constant,κ ) 0.29-0.26. We therefore carryκ ) 0.28
as a constant for the series to obtain the values in Table 3. These
B values compare very well with the VB computed ones. It is
interesting to note that the valueκ ) 0.28 corresponds very
closely to the fraction of bond stretching,∆d/d0, in the transition
state (0.26 for X) H), so that one may replaceκ by ∆d/d0 and
consider that∆EST′ decreases linearly as∆d/d0 increases. Using
the ∆d/d0 values from Figure 3 leads to a set ofB values (not
shown) which are nearly as good as the ones presented in Table
3 using a constantκ.

The second column in Table 3 listsB values estimated from
the bond energy, in eq 20:

TABLE 2: Barriers and VB Quantities for X • + H-X′ f X-H + •X′ a

H CH3 SiH3 SiH3
b GeH3

b SnH3
b PbH3

b

∆Eq MP2 17.7 22.3 16.5 16.1 13.6 10.5 8.5
CCSD(T) 14.9 21.4 14.7 11.1 10.2 7.6
BOVB 17.8 23.1 19.1 21.2 18.1 15.0 12.3
BDOVB 20.6 26.2 22.5 25.4 21.7 17.9 14.9
Exptl. ≈10 14.7 (18)

D MP2 92.6 103.9 84.2 85.2 77.6 68.3 61.6
VB 93.9 99.5 84.9 85.5 78.3 70.2 63.9

B BOVB 42.9 51.1 38.8 41.5 38.5 33.3 31.8
BDOVB 41.8 50.2 37.6 39.7 37.4 32.7 31.4

∆Ec BOVB 60.6 74.2 57.9 62.6 56.6 48.3 44.1
BDOVB 62.4 76.4 60.1 65.1 59.1 50.6 46.3

G BOVB 163.9 192.9 144.3 158.6 145.7 124.2 115.8
∆EST BOVB 240.3 276.4 234.0 224.2 212.0 187.5 172.1
G/∆EST BOVB 0.68 0.70 0.62 0.71 0.69 0.66 0.67
f BOVB 0.37 0.38 0.40 0.40 0.39 0.39 0.38
BL VB 35.8 41.2 33.3 34.7 32.4 28.1 26.4
BHL VB 28.0 32.1 26.8 26.0 25.4 21.8 21.2
REcov-ion BOVB 20.5 35.3 23.2 24.5 22.7 20.7 20.3

a In kcal/mol. b ECP-31G*.

REcov-ion ) ΣiδEcov-ion(i) ) Σici〈Φi|H|ΨHL〉 (18)

∆EST′ ) (1-κ)∆EST (19a)

B ) 0.25∆EST’ ) 0.25(1-κ)∆EST (19b)

B ) 0.5D (20)
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The logic behind this expression relies on the fact that at the
geometry of the reactants∆EST > 2D. Because at the transition
state geometry∆EST′ gets smaller because of bond stretching,
we may set∆EST′ ∼ 2D, and the equation forB follows from
the relation in eq 19b. Once again, the so calculatedB quantities
are nearly as good as the VB computed ones (see Table 3).

Barrier Heights. Having expressions forB, the barrier can
then be estimated from the barrier equation where the height of
the crossing point is expressed as a fraction of either the singlet-
triplet excitation∆EST, or of the corresponding bond energyD.

UsingG ) 0.75∆EST (eq 13) and the qualitatively derivedf
value of 1/3 (eq 14), the height of the crossing point becomes
∼0.25∆EST, and in combination with the expression forB in
eq 19b, the barrier expression follows:

Using the computed relation between the bond energy and
the singlet-triplet excitation,D ) (0.37- 0.38)∆EST, we get
G ∼ 2D. Together with theB expression in eq 20, the
corresponding expression for the barrier follows then in terms
of bond energy only:

The so calculated barriers are presented in Table 3 alongside
the VB, MP2, and CCSD(T) barriers. The simple expressions
for the barrier seem to capture the essence in the computed
trends. For X) H and CH3, the model barriers are closer to
CCSD(T) barriers and experimental data than either the VB or
MP2 data. If instead of the qualitatively derivedf value we use
in eq 22 the computed value,f ) 0.37, we obtain another set of
barriers which are close to the VB computed values. This shows
consistency of the barrier equations. This consistency further
supports our statement above that theB quantity is accurate
while most of the VB error in the calculation comes from
overestimation of the height of the crossing point, throughf.
Furthermore, all of the expressions starting with eq 19 through
to eq 22 project the root cause of the interrelationship between
all of the quantities as revealed by the plot in Figure 4. Thus,
the singlet-triplet excitation of the X-H bond that undergoes
actiVation is the organizing quantity of all of the trends in the
series.The ionic structures seem to have a constant, albeit
significant, effect on all of the barriers in this particular series.
Thus, although the polar effect on the identity barriers exists, it
is concealed because of its quasiconstant behavior.

Related Trends. To test the usefulness of eqs 21 and 22 for
predicting barrier heights in identity hydrogen transfer reactions,
we applied them to two other series.

Pross et al.5 studied the hydrogen abstraction barriers in the
identity process of alkyl radicals (R) R′ ) CH3, C2H5, i-C3H7,
and t-C4H9):

They observed a decrease of the barrier as the C-H bond
became weaker and explained the trend in precisely the same
manner as in the present paper. Using their computed barriers
and the corresponding bond energies, it is possible to fit the

Figure 4. Correlations of the barriers (∆Eq), heights of the crossing
point (∆Ec), and transition state resonance energies (B) in (a) with the
promotion energy gaps, in (b) with the singlet-triplet excitation energy,
and in (c) with the bond energy. All data for X) SiH3 refer to ECP-
31G*.

TABLE 3: Model and Computed Quantities for X • + H-X′
f X-H + •X′

B, kcal mol-1 ∆Eq, kcal mol-1

X eq 19b eq 20 BOVB eq 21 eq 22 BOVB (MP2; CCSD(T))

H 43.3 47.0 42.9 16.8 15.7 17.8 (17.7; 14.9)
CH3 49.8 49.8 51.1 19.3 16.6 23.1 (22.3; 21.4)
SiH3 40.4 42.8 41.5 15.7 14.3 21.2 (16.1; 14.7)
GeH3 38.2 39.2 38.5 14.8 13.1 18.1 (13.6; 11.1)
SnH3 33.8 35.1 33.3 13.1 11.7 15.0 (10.5; 10.2)
PbH3 31.0 31.9 31.8 12.0 10.7 12.3 (8.5; 7.6)

∆Eq ) 0.25κ∆EST; κ ) 0.28 (21)

∆Eq ) (2f - 0.5)D; f ) 1/3 (22)

R• + H-R′ f R-H + R′• (23)
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barriers with good accuracy to the general expression in eq 3
and obtain eq 24:

Here, thef value is quite close the semiempiricalf ) 1/3 estimate
(eq 14). The resonance energy of the transition state is 50 kcal/
mol which is close to the value computed in our study for X)
X′ ) CH3 (Table 2). Furthermore,B behaves as a constant in
the series. If we allow the value ofB to vary with the value of
D, as in eq 20, we can still reproduce the trend in these barriers,
but the scale of the barriers would now be much more condensed
than the scale in eq 24. This means in turn that, when all of the
atomic centers of the reaction remain the same, the quantityB
can be treated as a constant too. It is certain that the weight of
transition state ionicity increases in the series as the ionization
energy of X and X′ decreases from R) R′ ) CH3 to R ) R′
) t-C4H9. We may surmise therefore that in this series the
increase of ionicity contributes to the transition state resonance
energy in a manner that levels the falloff because of reduction
in the bond energy. The end result of the constancy ofB in eq
24, imparted by the polar effect, is that the reactivity trends in
the series is dominated by the promotion gap (i.e., the singlet-
triplet excitation).

An interesting series is the identity hydrogen transfer between
electronegative atoms, in eq 25:

A good reason to consider this series is that the X and X′ groups
are electronegative, and therefore, one might expect significant
contribution of bond ionicity effects, in accord with the well
established polar effect in hydrogen abstractions.2-4 The barriers
in this series were addressed by experimentalists and theoreti-
cians, and the consensus is that the barrier decreases in moving
from F toward I.33,34 Application of eq 22, using the known
bond energies of the H-X molecules, leads to the barriers in
Table 4. The barriers compare well with the CCSD(T) data.
The barrier calculated by the model for X) X′ ) F is also in
good agreement with the datum of Schaefer et al. is 23.9 kcal/
mol.35 In fact, the barriers in Tables 2 and 3 enable us to assess
the model equation’s ability to predict trends along a row of
the priodic table. Thus, eq 22 predicts, in accord with the results
of CCSD(T), that in each row the identity barrier is generally
larger for the more electronegative groups, X and X′ (compare,
e.g., the barriers for X) F vs CH3, etc).

All in all, the correspondence of the estimated barriers to the
computed data are very good. Apparently, in this identity series
too, the polar effect is masked. Thus, the decrease of theB value
in the series (through the expression in eq 20) follows the
decrease of bond energy, and this in turn follows the decrease
of electronegativity in the series. So, although the ionicity effect
is significant in the absolute sense, as we saw for the target

series studied here by VB, the effect is either constant in the
series or it varies with the other parameters in a uniform manner.
The net result is that again the promotion gap (orD through its
relation toG) dominates the trends in the series. It is no wonder
therefore that a great deal of reactivity patterns in hydrogen
abstraction are dominated by bond strength effects, even in
reactions of transition metal oxidants such as MnO4

-, CrO2-
Cl2, etc.36 This however does not rule out the importance of
the well-known polar effect,2,3 as demonstrated recently by in
the computational studies of Hrovat and Borden3b and Fox and
Schlegel.3a A two-state modeling by Donahue et al.4 projects
the importance of ionicity. Similarly, polar effects are evident
in radical additions to olefins as revealed by ab initio computa-
tions and VB modeling by Wong et al.,37 Fischer et al.,7 and
Fischer and Radom.38 However, what appears from all of these
studies is that the polar effect is expressed more clearly in
hydrogen transfers between nonidentical groups (nonidentity
reactions). In identity reactions as the ones studied here, the
polar effect is masked and the organizing quantity remains the
singlet-triplet promotion gap.

Equations 22 and 23 are limited to identity hydrogen
abstraction by strong binders. However, the VBSCD model in
its general form, is applicable to transfers of other atoms of the
general X+ X-X′ type.8,10 One of the interesting predictions
that the model makes is that when the X becomes a weak binder,
D becomes small, and∆Est , 2D the barrier becomes negative
and the X-X-X species becomes a stable cluster along the
exchange coordinate (see derivation in Appendix 1). This was
shown before by Malrieu.29 A typical such situation is when X
changes from X) H which is a strong binder to X) Li which
is a weak binder (X) H, D ) 93.9,∆Est ) 240 kcal/mol; X
) Li, D ) 25 kcal/mol and∆Est ) 32.9 kcal/mol) the X3 cluster
changes from a transition state to a stable entity for X) Li.
Thus, the singlet-triplet promotion gap is the organizing
quantity which predicts also the global change in the nature of
(X-X-X)‚ clusters as X changes from a nonmetal to a metallic
species.

Conclusions

The paper applies VB computations to obtain identity barriers
for hydrogen transfer reactions between X groups, X) X′ )
CH3, SiH3, GeH3, SnH3, and PbH3. Modeling of these barriers
by means of VB state correlation diagrams (VBSCDs) leads to
simple expressions for the barriers, in eqs 21 and 22. These
expressions show that the organizing quantity of the barriers is
the singlet-triplet excitation energy (∆EST) or bond energy (D)
of the X-H bond that undergoes activation. The larger the∆EST

or D, the higher the identity barrier. These equations are
successfully applied to deduce barriers for hydrogen transfers
between electronegative groups, X) X′ ) F, Cl, Br, and I.
The polar effect is shown to be significant but virtually constant
in the series. Thus, identity processes mask the polar effect,
which is more clearly expressed in nonidentity hydrogen transfer
reactions.

The model (though not the specific parameters) is applicable
to other atom transfer reactions where the Lewis bond, polar as
it may be, is still dominated by the covalent VB structure. In
such a case, the curves of the VBSCD are anchored in covalent
states and the promotion gap is given by the singlet-triplet
excitation energy. The model predicts that as the ratio of the
singlet-triplet excitation to the bond energy decreases below a
critical value, the saddle-point will be transformed to a stable
minimum along the exchange coordinate.8,10

TABLE 4: Model and Computed Quantities for X • + H-X′
f X-H + •X′

X ∆Eq (eq 22)a ∆Eq (CCSD(T))a,b

F 22.7 22.2 (23.9)c

Cl 17.2 15.6
Br 14.6 11.3
I 11.9

a In kcal mol-1 b CCSD(T)/6-31++G* c Reference 35 at the DZP/
CI level.

∆Eq ) 0.3481G - 50.0 kcal/mol; G ) 2DC-H (24)

X• + H-X′ f X-H + X′•; X ) X′ ) F, Cl, Br, and I
(25)
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In atom transfer reaction where the bond wave function is
dominated by ionic structures, the VBSCD will be transformed
into one where the principal curves are anchored in the charge
transfer states (ΨF* in this study).10 In such a reaction series,
reactivity will be dominated by redox properties of the reactants,
as already noted for the C-F bond activation in the F-abstraction
reactions of lanthanide cations, Ln+ + R-F.10,39 Thus, atom
transfer reactions will exhibit the gamut of reactivity patterns
from the covalent regime to ionic one.
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Appendix

Semiempirical VB treatments of the three-electron problem
have appeared before.8,29 The dependence ofG andB on ∆EST

(eqs 13 and 16) and the values forf (eq 14) were derived and
appear in refs, 8, 9, 28, and 30. This appendix uses expressions
based on the recent semiempirical approach of Wu et al.26 The
elements of this approach are similar in essence to the seminal
treatment of Malrieu in terms of a Heisenberg Hamiltonian.29

The energy of a Lewis bond, e.g., H-X (or X-X) relative
to the nonbonded reference determinant26,40 is given by:

Neglecting overlap in the normalization factors of the wave
functions, the energy of the triplet pair H• •X (or of X• •X) is
also+λ. However, this identity of expressions assumes that the
orbitals of the singlet paired bond (eq A.1) and of the triplet
pair are the same. This needs not be true, and the triplet pair
will have its own set of orbitals with energy in eq A.2:

The singlet-triplet excitation becomes then eq A.3. The
expressions forG andB follow in eqs A.4 and A.5, where the
primed quantities refer to the values at the crossing point of
the VBSCD (Figure 1)

At the crossing point (Figure 1) the Lewis structure, X• H-X
has on one side a bond with energy-λ′ and half a repulsive
interaction on the other side with energy 0.5λT′.26 Thus the
energy of the crossing point is given by

To enable us to derive a simple expression for the barrier,
we assume thatλ ) λ′. With this assumption, the height of the
crossing point becomes eq A.7:

This expression shows that the height of the crossing point

depends on the triplet repulsive interactions between the bonded
atom in the center (e.g., H) and the two terminal groups X.

The f factor becomes then eq A.8:

Combining equations A.8, A.7, A.5, and A.4, the barrier
expression becomes

It is seen from eq A.9 that the barrier is positive as long asR
> 1. When R < 1, the barrier becomes negative, and the
delocalized three-electrons\three-centers species XHX (or X-X-
X) becomes a stable cluster along the exchange coordinate (Q
in Figure 1).

The parameterR is the crucial quantity that determines the
transition from a saddle-point species to a stable cluster. From
eqs A.1 and A.3, we can show thatR determines the ratio of
the singlet-triplet excitation of the bond to its bond energy:

All of the X-H bonds in our study are typified by∆EST/D >
2 and hence theirR values are larger than 1. These are the
“strong binders”. In contrast, in a bond like Li2, ∆EST ) 32.9
kcal/mol andD ) 24.6 kcal/mol, and henceR ) 0.3374. This
is the class of “weak binders”, in which the triplet repulsion
(λT) is significantly shallower than the bonding interaction (-λ).
Equation A.9 predicts that clusters of “weak binders” will be
stable intermediates, in contrast to clusters of “strong binders”
which are transition states.

Equation A.9 turns out to be useful also for calculating
barriers, provided the∆EST andR quantities are available. For
the target reactions in the paper all of these quantities are
available and are displayed in Table 5 along with the corre-
sponding barriers. The results are amazingly good considering
the crude nature of the approximation. Assessment of the
approximations in terms of the original quantities of the model,
G, B, andf, shows that eq A.9 overestimates both B andf and
leads to error cancellation.
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